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Simple Frequency Estimation
via Exponential Samples

Steven Kay, Fellow, IEEE

Abstract— A method for determining the frequency of a real
sinusoid is proposed. Based on exponential sampling of the
waveform, the approach requires virtually no computation. It can
be easily implemented in digital hardware,

I. DESCRIPTION OF METHOD

SSUME we observe the real continuous-time sinusoid

s(t) = Asin (2nFpt), where A > 0 and that we wish to
determine the frequency Fy, which satisfies 0 < Fy < Fiax.
The sinusoidal phase is assumed to be zero. Let Fyax = oM
for some integer M. To measure the frequency to an accuracy
of N, we use

N
Fy = Fvax ) bn27" e,
n=1
where
b, =0 if s(t,) >0
=1 if s(tn) <0

and t, = 2"~ M~1 If s(t,) = O for some n = ng, then

’n.o—l
Fy = Fuax ( Z bn27" 4+ 2“"") @

n=1

which effectively terminates the expansion.

II. RATIONALE

Define the normalized frequency as fo = (Fo/Fuax) so
that 0 £ fy < 1. We use a binary expansion for fj as

fo=) ba27" 3)
n=1

where b, = 0 or 1.

For uniqueness, it is assumed that the dyadic rationals,
that is, numbers of the form k/2% for L an integer and
k=0,1,---,2% — 1, are represented by terminating expan-
sions. Hence, the number 3/4 is represented as 0.11000--.
as opposed to 0.10111---. With (3), determination of fg
is equivalent to determination of {b,}. Now, consider the
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angle of the sinusoid or 6(t) = 2w Fyt. For sample times
tn, = 2"~M-1 the angle samples become

0, =2nwFot,
=2m foFyax2™ M2
=2mfo2" ! )

for n = 1,2,---. Consider n = 1 so that #; = 2xfy. If
by = 0, then from (3), 0 £ fo < 1/2. The upper limit
of 1/2 is assumed not to.be possible due to assumption
of a terminating representation since 1/2 is represented as
0.1000--- . Hence, by = 0 if and only if 0 < #; < w«. In
addition, if b; = 1,1/2 < fy < 1 so that b; = 1 if and only
if # € 8; < 2mw. Next, consider n = 2 so that §, = 47 fq.
Using (3) ‘

n=2

= by —n+1
—27rb1+27r<-2—+2bn2 >

8, =4 5’1+ib 9 "
2 =4am 2 n

n=3
We can omit the 27b; term since it equates to 0 or 27, and
thus, it does not affect the sine function. Let a = be/2 +
2% 36,277 and note that if b2 = 0,0 < a < 1/2 and if
by = 1,1/2 £ o < 1. Hence
0<b <
w <l <2m

if and only if b, =0
if and only if by = 1.
By continuing the same argument, we can show that
0<t, <mreb,=0
7< 0, <21 &b, = 1. 5)
Excepting the case when 8, = 0 or 7, this translates into
s(th) >0 b, =0
s{tn) < 0 &b, =1.

If 5(tn,) = O for some n = ng, then 8,, = nk for k an
integer. Thus, from (4)

7k = 27 fo2m0 !
or fo = k/2™, which is a dyadic rational. It then follows that
0, =271 fo2" !
= 2n K gn1

2ne
=mk2nmno (6)
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which is a multiple of 27 for n > ng, and hence, b,, = 0 for

n > mg based on (5). If ng is the sample for which s(t,,) is

first equal to zero, then k& must be odd. Otherwise, k = 2,
and from (6)

0, = mign—mo+l

so that s(ts,—1) = 0, contradicting the assumption of the first
zero. In summary, if ng is the first sample term for which
s(t,) = 0, then we should choose b,, = 1 since ,, = kr
for k odd, and b, = 0 for n > ng since #, will be a multiple
of 2.

As an example, assume Fyax = 64 Hz and Fy = 60 Hz
so that M = 6.

For N = 4 bit accuracy, we sample at

on-M-1 n-1,2,3,4
S.

tn =
1

-1 1 1 1

64! 312 11678
Then, s(t,) = Asin(27(60)t,) so that s(t;) < 0,s(t2) <
0, s(t3) < 0,s(t4) = 0. Applying (2) with ng = 4, we have

Fo=64(2"*+2"24 273+ 27%) = 60 Hz.
ITI. PRACTICAL CONSIDERATIONS

A. NoiselPhase Errors

Assume that the sinusoidal phase is not zero so that s(t) =
Asin (2w Fyt+¢). We model ¢ as a random variable uniformly
distributed over [—a,a] or ¢ ~ U[—a,a]. In addition, due to
observation noise, we observe the samples

z(tn) = Asin (2nFpt,, + ¢) + w(n]

where w{n] is modeled as white Gaussian noise with variance
o? and is independent of ¢. The mean squared error (MSE)
of Fy as given by (1) is now found. We need not consider (2)
since z(t,) # O with probability one. The mean squared error
of Fy = Fyax ZN_; 6,27 is

MSE(Fp) = E[(Fo — Fo)?]
= Es Eu)gl(Fo — Fo)’]
= E4Eu[(Fo - Fo)?]
where E,; denotes the expected value with respect to the PDF

of ¢, and E,, denotes the expectation with respect to the w(n]
samples. However

Eu[(Fo — Fo)?] = vary(Fp) + (Ew(Fy) — Fp)2.
Since 13,,“ will be 1 when z(¢,) < 0 and O otherwise, we have
that Pr{b, = 1] = Pr{z(t.) < 0] = Q((A/0)sin(2nFot, +
$)) 2 pu(¢) and therefore, conditioned on ¢,b, is

* Bernoulli with probability p,(¢). Q(u) is defined as Q(u) =
12 (1/V2r)e= (/D gt Hence

N
var, (Fo) = Fax z var,, (b,)2~2"
n;l
= FE/IAX Z Pa(9)(1 = pn(¢))2_2n
n=1
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Fig. 1. MSE for a frequency of Fo = 59 Hz.

and

N
Ew(po) = Fumax Z Pn(¢)2—n-

n=1

Since, ¢ ~ U[—a,a], we finally have that

e N
MSE(F) = o [ Fliax 3 pn(@)(1 - pa(¢))2~" ds

1 [ " ’
+ 5 . (FMAXnlen(‘IS)z—n - Fo) d¢
Q)
where
@) =Q(Ssn@Rt+e).  ®

As an example, the MSE is shown in Fig. 1 for a frequency
of Fy = 59 Hz. The maximum frequency was chosen to be
Fyax = 64 Hz (M = 6) and N = 8 bits of resolution were
selected.

B. Observation Interval

Since the sample times are exponential, the length of
time over which we must observe z(t) can become large.
The observation interval for N bits is T = 2N-M-1 =
oN-1 /Fuax A given relative bias error due to bit truncation
or |E(Fy) — Fy|/Fy = € may be obtained if we choose N
bits where

27N Fvax _
T =e.
(This ignores the bias due to noise.) Since 2T = 2V /Fuax,

we have
1

T= .

2€F0

The observation time is determined by the accuracy desired
and the minimum frequency to be estimated.

®




LA

-
.-

KAY: SIMPLE FREQUENCY ESTIMATION

IV. DISCUSSION

The approach described is easily implemented in digital
hardware using a clock running at a rate of Fyjax cycles/s and
a binary counter to obtain the exponential sample times. The
samples are taken when the counter contains 1, 2, 4, 8, --- .
To ensure a sinusoidal phase of zero, the counter is initialized

~when z(t) crosses zero in an upwards direction. From (2),

the probability of z(t,) = 0 and, therefore, of terminating
the expansion is zero in the presence of noise. Thus, if fy is
a dyadic rational, whose binary expansion should terminate,
noise effects may cause the expansion to continue. To avoid

75

this it may be better to truncate the expansion at n = ng if
|z(tn,)| < 6, where § is a small number.

Last, the estimation method may be used to measure the
frequency of other periodic waveforms such as square waves,
for example. The only requirement is that we should be able
to determine from the waveform if 6, takes on values as per
(5). In addition, the speed of a motor or rate of revolution of
any constant rotation object may be ascertained as described.
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The problem is to estimate a chaotic signal s[n] that is embedded in white Gaussian

Methods for Chaotic Signal Estimation

Steven Kay
University of Rhode Island
Kingston, RI 02881 *

Venkatesh Nagesha

Speech Research Department
AT&T Bell Laboratories
Murray Hill, NJ 07974

Abstract

A dynamic programming algorithm and a suboptimal but éomputation—
ally efficient method for estimation of a chaotic signal in white Gaussian
noise are proposed. The nonlinear map is assumed known so that only the
initial condition need be estimated. Computer simulations confirm that both

approaches produces efficient estimates at high signal-to-noise ratios.

Problem Statement

noise w{n] of variance o?. Hence, the data model is

where s[n] is a deterministic signal generated according to the nonlinear and non-

z[n] = s[n] + w[n] n=0,1,...,N -1,

invertible map

sfinl = f(sfn —1]).

EDICS # 2.7.5, 3.6.1
*This work was supported by the Air Force Office of Scientific Research under contract AFOSR
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" The map f : [0, 1] — [0, 1] is assumed known and to be uhimodéi. As a result, it
has two preimages. Typical examples of such maps are the logistic and tent maps
[1]. We furthermore assume that the initial condition s[0] is unknown so that
the problem of estimation of s[n] r'educesv to that of estimation of only the initial
condition. Once this estimate is available the entire signal may be estimated, at
least in theory, using (2). In practice, because of the extreme sensitivity to errors,
(2) cannot be used to propagate signals in the forward difection. Instead, we rely on

the parameterization described in [2] whereby the sequence {s[0], s[1],. .., s[N— 11}

is replaced By {po,p1,-..,pN-2,S[N — 1]}. The sequence {p,}=7 is the itinerary,
or
0 if 0<s[n]<e
Pn =9 : o
1 if c<sn)<1

where c is the value of z for which f(z) is maximum. Hence, the itinerary can be
used to determine the appropriate preimages of a chaotic signal when propagated
backward. As an example, for the logistic map or f(z) = 4z (1 — z), the function
is |
1 1+ @p-1)Vi-=
() = .

and consists of the preimages fo(z) = 2=¥2=2 and f{!(z) = 1@ Thus, we

2

can write

sfn—1] = £, (s[n]) .

2 Halving Method

Before discussing the dynamic programming (DP) approach to the maximum like-
lihood estimate (MLE) evaluation, we describe a suboptimal but computationally
efficient approach. In the process we prove that for a large class of unimodal maps
the initial condition can be determined from the itinerary of the map. The ar-

gument relies on certain topological conjugacy relations. Now assume that f is




conjugate to the tent map T or

| 2z
1) = { 2(1 ~ )

= O
IAIA
8 8
IAN A

’

—t N

so that, there exists an invertible transformation & : [0, 1] — [0, 1] such that
f=hoToh™. (3)
Then, we may write s[n] as

sln] = f*(s[0))
= hoT"oh™(s[0]) ,
since f* = hoT"oh™! and f™ is the n fold cbmposition of f. Let s'[0] = h'-1 (3[0])
so that, :
T™(s'T0]) = A7 (s[n]) .

Now use the substitution property or T™ = T o S™~! [3], where S is the Bernoulli
shift

S(z)=2zmodl 0Kz <1,

to yield
T o S™1(s'[0]) = R~ (s[n]) .

If s'[0] is represented in the binary format s'[0] = 252, 54275 = 0.b;b,.. ., (where

we use a terminating expansion for the dyadic rationals), we have that
S HS'0]) = 0.b,bpyy ... -

Hence, it follows that
T( O.bnbn.H e ) = h—l (s[n]) .

The effect of the tent map is to shift left by one bit if the argument is 0 < z < 1/2
and shift left and complement (due to 1 — z factor) if 1/2 < z < 1. As a result,

h_l(s[n]) = O.bn+1bn+2 e lf bn = 0,

= O.I_Jn+1zn+2 e lf bn = 1,

3




where the overbar denotes the complement bit. This says that

4

0 if 0< A (sn]) < 3 and b,=0
: 1 if <Rk (sn])<1 and b,=0
ntl = 3

1 if 0<h7(s[n]) <3 and b,=1

0

if 7<h(s[n])<1 and b,=1

If we now let p, be the itinerary of h~1(s[r]) or p, = 0if 0 < h~1(s[n]) < 1/2
and p, =1if 1/2 < A7Y(s[n]) < 1, we have finally that, '

bn+1 = bn, @Pn 3

~ where @ denotes the exclusive OR operation. The recursion begins with b; = po.
To summarize, we can determine the initial condition of a map that satisfies the
conjugacy relation of (3) as
- .
s[0] = A (Z bn2'") ,
n=1

where b, = b,_1 @ pu—1 , (b1 = po) and p, is the itinerary of h~'(s[n]). It is

interesting to note that in practice we will have {po,p1,...,pn-1} based on the
itinerary of the data set {s[0],s[1],...,s[/N — 1]}, assuming no noise. Hence, we
will have

5[0] = A (fj b 2-n) , (4)

n=1
so that the estimate of h72(s[0]) will be in error by at most 1/2V. We will call
the estimation of s[0] by (4) the halving method since as each itinerary value is
obtained, the interval in which s[0] must reside is halved.

As an example, for the chaotic logistic map f(z) = 4z(l — z) it is known
that h(z) = sin*(%z) and h~'(z) = Larccos(l — 2z). Since h~! maps [0,1/2) onto
[0,1/2) and [1/2,1) onto [1/2,1) the itineraries of A~1(s[r]) and s[n] are the same.
Thus, the halving method estimates s[0] as

4[0] = sin? (g i by 2—n) , (5)
n=1
where ?)n = f)n_l ® Prn—1 and P, is the itinerary of z{n]. The performance for

this example will be discussed in Section 4. Note that, if we consider s[n] as the

4




initial iterate, then it depends only on {pn,pn+1,-..}. Furthermore, s[rn] may be
determined directly from this itinerary in a similar fashion as per (4). Or since
the itinerary {pn,Pn41,..-} can be obtained for any s[n] there is a one-to-one

correspondence between s[0] and {po,p1,...,Pn-2,5[N — 1]} as already noted in

[2].

3 Dynamical Programming

The MLE for the initial condition is obtained as the value of s[0] that minimizes
N-1 2

J=3 (m[n] - s[n]) where s[n] = f*(s[0]). - A straightforward minimization
n=0 ’ .

requires one to compute f"(s[0]), which-leads to cemputational errors. Rather,

we employ a DP approach, which does not require a forward propagation. The
method to be described applies to any unimodal map. In particular, for the tent
map, which is piece-wise linear, an analytical solution may be found as in [2]. Let

i (s[k]) = 3 ([n] = s[n))”

n=0

and also X
=1 (ol 6)

be the inverse function composition for n < k — 1. This is defined as

slk—1 = f,,1, (s[k])

Pk—1

sfk—2] = £ (sjk—1])

Pr—2

R A C117)))
= fo s (S[ED)
etc.

Now, let
I(s[k]) = min _Jk(s[k])

{PO »P1 1"'7pk—-1}

so that the desired minimization is effected when &k = N — 1 and I (s[N —1]) is

minimized over s[N — 1]. Thus,
k

L(s[k]) = min Y (z[n] — s[n])?

{PO 1PlyesesPhk—1 n=0




- - |
= min min Y (z[n] — s[n])® + (z[k] — s[k])?

Pk-1 {Po,Pl v--:pk—Z} n=0

= min min [Jia(slk — 1) + (alk] - sfk])]

Pk—1 {P0.P1,--PE—2

= min  min [«]k—l (f ;;1_1 (S[k])) + (z[k] - S[k])z]

-~ Pk=1 {p0,p1,ePr—2}

Since s[k] does not depend on {po, p1,...,pk~1} but only on {px,...,pn—2,s[N —
1]}, as per (6) we have, |

T(s[H]) = min Loy (£, (5[KD) + (e8] - s[K])” , ")
as our DP algorithm. The recursion is computed as a function of s[k] for k =

1,2,...,N —1 with the inifializa.tion
-~ Io(s[0]) = (z[0] — s[0])* .

After obtaining In_1(s[N —1]), we find the s[/N — 1] that minimizes it and denote
the minimizing value as 5[V — 1]. We then backtrack to find {po, p1,- - -, Pn-2}. In

doing so, the signal sequence is estimated as

3[n — 1] = f;.", (8[n])
forn=N-1,N —2,...,1. Note also that this approach avoids the exponential

increase in computational errors since the propagation is along the stable manifold.

4 Computer Simulations Results

It has been shown [4] that the MLE of the initial condition of a one-dimensional
chaotic signal is an inconsistent estimator. Hence, the usual asymptotic distribu-
tion as N — oo does not hold. However, as the SNR becomes large, the asymptotic
distribution is valid. In particular, the asymptotic probability density function
(PDF) of 3{0] is

(0] ~ N ([0, T7(s[0D)) » (8)
where I(s[0]) is the Fisher information (and hence, I=*(s[0]) is the Cramer-Rao

lower bound (CRLB) for an unbiased estimator) and is found to be

0.2

I7(s[0]) = SN1g1 (9)

6




where
{1 fm=0 '
B2 = me 0
" IHI [/ (sl ifm>0 1)
=0

and f’ denotes the derivative of f [5].

We compare the performance of an MLE using a fine grid search (by minimizing
J= Ni:l(m[n] — s[n])? directly) and that of the two algorithms previously described
to thneziheoretical performance of (8). In particular, the bias and variance are
determined using Monte Carlo simulations. Note that the CRLB for a logistic

map can be shown to be

I7(s0) = _004:[1[31 T

We used a data record length of N = 10 and an initial condition of s[0] = 0.61.

Some implementation details for the three methods are now discussed. For the
grid search MLE we first use a coarse search by dividing up the [0,1] interval
into 1000 points. Then we search over the interval [5.[0] — 0.001, 5.[0] + 0.001]
using 1000 points where §.[0] is the coarsely obtained point of the minimum. The
implementation of the halving method departs slightly from (5). This is because
the use of (5) may produce a maximum error of 1/2V =~ 0.001, even in the absence
of noise. The CRLB, because of its exponential decrease with NV, can be much lower

than this error. To improve the performance we first obtain the coarse estimate
r X,
5.[0] = sin? (E(Z b2 + 2-(N+1)))
n=1

where the addition of the term 2-(N+1) has the effect of choosing the midpoint

of the interval (Z b,27", Z b,27" —ﬁ) Then, a fine search (100 points)

n=1

over the interval (5.[0] — 27V,5.[0] + 2-V) is made by minimizing J, as in the
MLE implementation. Note that the length is twice that of the coarsely obtained
interval. The fine search is repeated twice over successively smaller intervals of 100
points. The DP implementation of the MLE uses 500 points for the state s[k]. For
the search over s[NV — 1] we use an initial quantization of 500 points to locate a

coarse estimate of $[/NV —1]. We then choose a finer grid for §| N —1] centered about

7




the previoﬁs estimate as well as the same estimates {po,P1,.--, N—2} oBtained
previously.

The results are shown in Figure 1. Above the threshold of about 40dB all
three methods produce unbiased estimates that achieve the CRLB. (The bias,
although not shown, was negligible above the threshold). This is in accordance
with the theoretical results of [4]. Of the three methods the halving approach is
computationally the simplest. If enough data points are available, the fine search
employed for the halving method may be eliminated. This is because the error will
be at most 1/2V and so the estimate, which although not attaining the CRLB,

will be accurate enough for most practical purposes.

Acknowledgments. The authors wish to than_k S. Talwalkar for performing the

computer simulations described in this paper.
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